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This paper presents an advanced model for the design of stream-lined axisymmetric extrusion dies based
on a prescribed strain rate variation. This is vital to the preparation of the workpieces with mechanical
properties that are very sensitive to the strain rate distribution during a manufacturing process. The pro-
posed model, which incorporates Tresca’s yield criterion and velocity field with the die angularity, can
give an accurate prediction of the die shape. Influences of the interfacial friction and the ram velocity on
the die geometry are also studied. As a verification of the proposed model, an updated Lagrangian formu-
lated, elasto-plastic finite element program was developed to analyze the axisymmetric extrusion process.
A clear derivation of the load-correction matrix, which is indispensable for the surface traction rate equi-
librium in the updated Lagrangian formulation, is described for the application of the finite element
simulation. A friction-correction matrix based on a constant shear law is used to solve the interfacial fric-
tion. From the comparison of the resultant strain rate distribution, it verifies that the advanced model can
determine the surface angularity and friction force in the extrusion process.

1. Introduction

Most materials can be manufactured via extrusion process
for producing shaped products. However, extrusion technology
has undergone limited improvement in recent years due to the
inherent complexity of the process. Especially for some com-
posite materials, the strain rate variation experienced in the ma-
terial as it flows through the die is an important factor in the
extrusion process. The strain rate must be controlled under a
certain magnitude so that the influences of the generation and
transfer of heat, as well as the distortion of the material on the
metallurgical variations, are acceptable.

Conventional extrusion dies, such as the flat face (shear)
dies and converging dies, have been used in the extrusion for
several decades. Because of the hot shortness resulting from
considerable adiabatic shear heating, the shear dies can only be
operated at low ram speeds. Conversely, converging dies,
which have conical, parabolic, or streamlined shapes, are better
suited to generate smoother material flow. According to the
study carried out by Srinivasan et al. (Ref 1), when conical dies
are applied, the flowing material is subjected to rigid body ro-
tations and abrupt changes in velocity at the entrance and exit
planes of the die. This yields great redundant work. The situ-
ation of a parabolic die is similar. As for streamlined dies, such
as cubic spline dies, the material flow path is smooth and the
velocity is continuous, but the strain rate generally peaks to-
ward the exit (Ref 1). Obviously, a new technique of develop-
ing adequate shapes for controlling strain rate is necessary in
the extrusion process.

Srinivasan et al. (Ref 1) developed an ideal work slab
method to predict a die profile, which can have a controlled
strain rate in extrusion. However, their methodology ignores
the influences of surface angularity and interfacial friction
force on the material flow. Hence it cannot apply to the process-
es with high friction stress and sloped tool-workpiece con-
tacted surface. Chang (Ref 2) recently proposed a new
advanced slab method, which combines the velocity fields with
the yield criterion, for plane strain strip rolling process. In
Chang’s method, Mohr’s circle is used so the stress state can in-
volve the effects of the surface angularity and friction force. In
this paper, Chang’s method will be modified and applied to the
design of strain rate driven dies for the axisymmetric extrusion
process.

As a verification for the developed advanced slab method,
an updated Lagrangian formulated, elasto-plastic finite ele-
ment program was also constructed to analyze the axisymmet-
ric extrusion process. Due to the change of the configuration of
the tool-workpiece surface, the equilibrium of the surface trac-
tion rate induced the load-correction matrix (Ref 3, 4). The
theoretical formulation of the load-correction matrix for axi-
symmetric process was derived in this work. Thereafter, the
friction-correction matrix of constant friction shear law was de-
rived to solve the frictional traction force rate. After incorporat-
ing these two correction matrices into the usual updated
Lagrangian formulated, finite element analysis, the axisym-
metric extrusion was simulated completely from the initial
nonsteady state to the steady state. The resultant strain rate dis-
tribution of the advanced model varies so that it can be applied
to solve the surface angularity and friction force.

2. Theory

2.1 Advanced Slab Model

As shown in Fig. 1, the material is pushing through a con-
vergent axisymmetric die with the inlet diameter h1 and the out-
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let diameter h2. The length of the die is L. If the material under-
goes a prescribed strain rate, it is convenient to use the Mohr’s
circle technique to describe the shear stress distribution includ-
ing angularity effect. Knowing that the state of stresses at any
point under plastic deformation satisfies the Tresca yield crite-
rion, the radius of this Mohr’s circle equals the shear yield
strength of the workpiece, say k. It is written as

(σx − σr)2 + 4τxr
2  = 4k2 (Eq 1)

In the constant friction law, the shear stress along the tool-
workpiece interface can be expressed as

τ = −mk (Eq 2)

where m is the friction factor. If the friction angle, α, is defined
as

α = sin−1(−mu) (Eq 3)

then the shear stress on the tool-workpiece interface with re-
spect to the x-r coordinate system is obtained geometrically
from Mohr’s circle

τxr(x,h/2) = ksin(α + 2λ) (Eq 4)

where λ represents the geometrical angularity of process. That
is

λ = tan−1



1
2

 
dh
dx





(Eq 5)

Because the shear stress τxr vanishes at the centerline of the
workpiece, it is assumed that the shear stress varies linearly
along the thickness of the workpiece and can be expressed as

τxr(x,r) = (2krsinφ)/h (Eq 6)

where

φ = α + 2λ (Eq 7)

After substituting Eq 6 into Eq 1, the following equation is
obtained:

σx − σr = 2k√1 − 

sinφ 

2r
h





2

(Eq 8)

According to the Levy-Mises flow, the relation of the strains
rate to stresses is described as

ε
.
x − ε

.
r

ε
.
xr

 = 
σx − σr

τxr

(Eq 9)

Using the definition of strains rate to the velocity compo-
nents, an equation that combines the velocity components to
the stresses is derived as

∂u

∂r
 + 

∂v

∂x
 = −6 

∂v

∂r
 

τxr

σx − σr

(Eq 10)

where u and v are the velocity components in the global x and r
coordinates. Moreover, it is assumed that the vertical compo-
nent v varies linearly across the workpiece:

v(x,r) = 
usr

h
 
dh
dx

(Eq 11)

where us is the horizontal component of velocity on the tool-
workpiece interface. Combining Eq 6, 8, and 11, the general ex-
pression of u can be derived to be

u(x,r) = 
1
16

 



1 − 8




r
h





2



 [us

′ hh′ + us(hh′′ − h′2)]

+ 
3ush′

2sinφ
 



√1 − 



2r
h

 sinφ



2

 −  C



 + 

4q

πh2
(Eq 12)

where ′ means the derivative with respect to x direction. q is the
volume flow rate which is:

q = π 




h1

2




2

ur = π 




h1

2





2

(u1)ave (Eq 13)

where ur is the ram velocity, which equals the average entrance
velocity (u1)ave. C is denoted as the inhomogeneity function
and is derived as 

Fig. 1 Schematic representations of axisymmetric extrusion
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C = 




σx − σr

2k



ave

 =

   
8

h2
 ∫  
0

h/2

r √1 − 


2r
h

 sinφ



2

    dr = 2(1 − cos3φ)/3sin2φ

(Eq 14)

Physically, C represents the total effect of surface angularity
and friction force on the “average” yield criterion. It is assumed
that the shear strain rate is relatively small with respect to the
strains rate of x and r direction. Therefore, the strain rate of x
and r will be the principal strain rate. Hence, the equivalent
strain rate is derived as

ε
.
 = −2ε

.
r = −2 

ush′
h

(Eq 15)

It is found that the equivalent strain rate is a function of the
horizontal velocity on the tool-workpiece interface. Substitut-
ing Eq 15 into Eq 12 and letting r be h/2:

ε
.
us

′  = us




ε
.
′ − 

322

h
 

us + 

3hε
.

4sinφ
 (cosφ − C) − 

4q

πh2




  ε

.
 ≠ 0

(Eq 16)

If the strain rate is not zero, it is convenient to define the fol-
lowing nondimensional terms:

X = 
x
L

 H = 
h
L

 Us = 
us

ur
 E = 

ε
.
L

ur
(Eq 17)

and Eq 15 and 16 can be rewritten in nondimensional forms as:

H′ = 
HE
2Us

(Eq 18)

and

Us′ = Us 




E′
E

 − 
32Us

H2E
 



Us + 

3HE

4sinφ
 (cosφ − C) − 

H1
2

H2









E ≠ 0 (Eq 19)

It is noted that the nondimensional strain rate E actually gives
the combined effect of the strain rate, die length, and the ram
velocity. X, H, and Us represent the nondimensional position,
diameter, and horizontal velocity, respectively.

As for the entrance and exit where the strain rate approaches
zero, Eq 16 can be differentiated with respect to x again and ap-
plied to the condition of zero strain rate. The nondimensional
form of the velocity gradient for zero strain rate is to be:

U s
′  = 





H2E′′
32

 − 
3HE′
4sinφ

 (cosφ − C)



 



2 − 

H1
2

H2Us





−1

 E = 0

(Eq 20)

From Eq 12, the surface velocity us at the position where h′
vanishes, such as the entrance and the exit, is found to be

us = urh1
2/[h2(1 + hh′′/16)] = (u1)aveh1/h(1 + hh′′/16)]

(Eq 21)

where (u1)ave is the average entrance velocity, which is equal
to the ram speed, ur. Because h″ is usually negative at the en-
trance and positive at the exit, the surface velocity is faster
than the average velocity at the entrance, while it is slower than
the average velocity at the exit. For the sake of simplicity, h″ is
usually set to be zero, and the deformation is uniform at X = 0
and X = 1. The ram velocity ur, which is identical to (u1)ave, can
be just denoted as u1.

The nondimensional variables H and Us can be solved by in-
tegrating Eq 18 and 19, or 20, simultaneously with boundary
condition H1 for the given values of E and friction factor m. The
final thickness, say H2, can be used to calculate the size reduc-
tion R* and reduction R, which are defined as

R∗ = 
h1 − h2

h1
 R = 

h1
2 − h2

2

h1
2

(Eq 22)

2.2 Finite Element Modeling Analysis

In the framework of the application of the incremental de-
formation for the metal forming process, it is convenient to
adopt the updated Lagrangian formulation for the virtual work
rate equation (Ref 5):

∫  
v

[δe
.
] 




s
. 



dv = ∫  

S
[δv] 



f
.
0




dS (Eq 23)

where s
. 


 is the Lagrange stress rate, 


e
. 


 is the velocity gradient

of ∂vi/∂xj, and 

f
.
0



 is the rate of the nominal traction assigned

over the surface, S, on the current configuration. Because the
principal axes of the material element will be spun in the large
forming process, it leads to adopting the Jaumann rate of Kirch-
hoff stress, 



t
∗ 



, to relate to the Lagrange stress rate. The relation

in the updated Lagrangian formulation is (Ref 5):

[s
.
] = [t∗ ] − [ε

.
][σ] − [σ][ε

.
] + [σ][e

.
] (Eq 24)

where [σ] is the current Euler stress and [ε
.
] represents the Euler

strain rate. The relation between [ε
.
] and [e

.
] is:

[ε
.
] = 

1
2

 ([e
.
] + [e

.
]T) (Eq 25)

Equation 24 can be written in a contracted form as
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

s
. 


 = 



t
∗ 



 + [Dg]




e
. 


 (Eq 26)

Explicitly, [Dg] comprises the initial stress components at each
deformation stage and is called the initial stress matrix.

It is natural to express the velocity, v, strain rate, ε
.
, and ve-

locity gradient, e
.
, in terms of the nodal velocity, d

.
, that is:




v



 = [N]




d
.








ε
. 



 = [Bε]



d
.







e
. 


 = [Be]



d
.



 (Eq 27)

where [N] is the shape function. [Bε] and [Be] represent the
strain rate-velocity matrix and velocity gradient-velocity ma-
trix, respectively. Substituting Eq 26 and 27 into Eq 23, the dis-
cretized element stiffness matrix is evaluated to obtain the
entire global stiffness matrix:

([Kep] + [Kg])



d
.
g




 = 



F
.

0




(Eq 28)

where [Kep] is the conventional elasto-plastic stiffness matrix.
[Kg] represents the geometric stiffness matrix, which relates to
the initial stress matrix [Dg]. 




d
.
g




 is the nodal velocity in the

global coordinate system. 


F
.

0



 denotes the nominal force rate

on the contacting surface. It is noted that the change of the con-
figuration on the contacted surface, 



F
.

0



 should be replaced by

the true force rate 

F
.



 and a load correction matrix [Kc], which is

related to local nodal velocity 


d
.
l
S



:




F
.
0




 = 



F
.




 + [Kc]




d
.
l
S




(Eq 29)

where superscript S denotes the tool-workpiece contacted sur-
face.

Load-Correction Matrix.  As shown in Fig. 2, considering
the term in the surface integral part of Eq 23 and referring it to
the local coordinates ξ, η, and ζ, the authors have




f
.
0




dS = 

d
dt

 (

f




dS) = f

.
t1

→
t1 dS + f

.
t2

→
t 2dS + f

.
n

→
ndS 

     + ft1
→
t
⋅
1dS      + ft2

→
t
⋅

2dS + fn
→
n
⋅
dS + ft1

→
t1 d

⋅
S + ft2

→
t2 d

⋅
S + fn

→
n d

⋅
S

(Eq 30)

where t1, t2, and n are the unit vectors, which are the tangential
and normal directions of the surface. The relations of the unit
vectors and their rates are as follows:

→
t
⋅
1 = −θ

.
2

→
n + θ

.
n

→
t2 (Eq 31)

→
t
⋅
2 = θ

.
1

→
n − θ

.
n

→
t1 (Eq 32)

→
n
⋅
 = θ

.
2

→
t1 − θ

.
1

→
t2 (Eq 33)

where θ
.
1, θ

.
2, θ

.
n, and their direction are shown in Fig. 2. By sub-

stituting unit vectors rates into Eq 30 and letting the unit vectors
coincide with the local coordinate system:

d
dt

 (


f 



dS) = 


f
.
t1 − f

.
t2θ

.
n + f

.
nθ

.
2 + ft1 

d
.
S

dS



 
→
t1 dS

     + 

f
.
t2 + f

.
t1θ

.
n − f

.
nθ

.
1 + ft2 

d
.
S

dS



 
→
t2 dS

     + 

f
.
n − f

.
t1θ

.
2 + f

.
t2θ

.
1 + fn 

d
.
S

dS



 
→
ndS (Eq 34)

It is convenient to express the virtual velocity along the sur-
face of the rigid tool as:

[δv] = [δvξ  δvζ  δvη] (Eq 35)

and

∫  
S

[δv] 


f
.
0




dS = ∫  

S
[δv] 

d
dt

 (

f



dS) 

      = ∫  
S




δvξ




f
.
t1 − ft2θ

.
n + fnθ

.
2 + ft1 

d
.
S

dS







       + δvζ



f
.
t2 + ft1θ

.
n − fnθ

.
1 + ft2 

d
.
S

dS




      

+ δvη




f
.
n − ft1θ

.
2 + ft2θ

.
1 + fn 

d
.
S

dS






dS

(Eq 36)

The terms which contain fn, ft1, and ft2 in Eq 36 will induce
the load correction matrix [Kc]. If the geometric relation is in-
corporated in the contacted surface, it showsFig. 2 Surface element and relation of local coordinate
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θ
.
1 = −κ1vζ θ

.
2 = κ2vξ

θ
.
n = 

1
2

 




∂vζ

∂ξ
 − 

∂vξ

∂ζ




 

d
.
S

dS
 = 





∂vξ

∂ξ
 + 

∂vζ

∂ζ





(Eq 37)

where κ1 and κ2 are the curvatures of the tool surface. For the
problem of axisymmetric process, it is natural that the follow-
ing relations should be unconditionally satisfied as:

δvζ = 0  ft2 = 0

vζ = 0   
∂vζ

∂ζ
 = 

vr

r
(Eq 38)

As shown in Fig. 3, the relation of the radial velocity compo-
nent vr is equal to –vξsinα.  Assuming that the tangential velocity,
vξ, and normal velocity, vη, are linearly distributed for the ma-
terial element along the tool-workpiece interface, it will be pos-
sible to integrate along the elemental line to obtain the explicit
load correction matrix [Kc] for the triangular element in Fig. 4:

[Kc] = 



















− 
Fnκ2

3
 + 

Ft

2l
 + 

Ftsinα
3r

   0   

Ftκ2

3
 + 

Fn

2l
 + 

Fnsinα
3r

     0   

− 
Fnκ2

6
 + 

Ft

2l
 + 

Ftsinα
6r

   0   

Ftκ2

6
 + 

Fn

2l
 + 

Fnsinα
6r

     0    

− 
Fnκ2

6
 − 

Ft

2l
 + 

Fnsinα
6r

    0 

Ftκ2

6
 − 

Fn

2l
 + 

Fnsinα
6r

      0 

− 
Fnκ2

3
 − 

Ft

2l
 + 

Ftsinα
3r

      0 

Ftκ2

3
 − 

fn
2l

 + 
Fnsinα

3r
        0 

 



















(Eq 39)

where Fn and Ft are the known traction force components. l is
the contacted length of the triangular element.

Substituting Eq 29 into Eq 28 and incorporating [Kc], the fi-
nite element stiffness equation that connects the nodal velocity



d
.
l
S



 on the tool-workpiece interface and the internal nodal ve-

locity 

d
.
g
I 



 is





Kep
SS + Kg

SS + Kc

     Kep
IS + Kg

IS   
Kep

SI  + Kg
SI

Kep
II  + Kg

II




 











d
.
l
S

…
d
.
g
I










 = 











F
.

t

F
.

n

…
0










(Eq 40)

where F
.

n is the normal force rate. F
.

t is the friction force rate,
which comes from the integral of the term f

.
t1 in Eq 36.

Friction-Correction Matrix.  The constant shear friction
law is adopted to evaluate F

.
t in this paper. The constitutive

equation of the constant shear friction stress rate can be repre-
sented as (Ref 3):

f
.
t1 = 





−β∆d
.
ξ

0
        ≡Σ∆dξ ≤ dabove{Σ∆dξ symbol (Eq 44)

where ∆d
.

ξ is the nodal relative velocity between tool and work-
piece. Σ∆dξ is the summation of the nodal relative displacement

∆dξ. β is equal to mk/d. Physically, the meaning of the constitu-
tive equation is the friction stress, which will be equal to mk
when the accumulated nodal relative displacement reaches the
prescribed distance, d. Otherwise the friction stress will be line-
arly increased by the nodal relative displacement. Considering
a triangular element on the tool, the nodal relative velocity
∆d

.
ξ is expressed as

∆d
.

ξ = [1 − 
s
l
  

s
l
] 





∆d
.
1ξ
S

∆d
.
2ξ
S





(Eq 42)

Therefore, the F
.

t can be evaluated by the following integral
computation




F
.

t



 = ∫ 

S

 δvξf
.
t1dS = [δd

.
1ξ
S   δd

.
2ξ
S ]


−[Kf

SS]

 




∆d
.
1ξ
S

∆d
.
2ξ
S





(Eq 43)

where [Kf
SS] in Eq 43 represents the friction correction matrix:

Fig. 3 The relation between velocities vr and vξ

Fig. 4 Nodal forces and local velocities of a triangular element
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(Eq 44)

As shown in Fig. 5, the tool or die has a specified velocity
d
.
D in a deformation stage. M is a contacted point on the tool sur-

face. Hence, the nodal velocity of point M can be decomposed
into the following form




d
.
l
S


M

 = 




d
.
Dξ

d
.
Dη



M

 + 



∆d

.
l
S


M

(Eq 45)

The d
.
Dξ and d

.
Dη are the tool velocities in the local coordinates.

Substituting Eq 44 and 45 into Eq 40:











Kep
SS + Kg

SS + Kc + Kf
SS

Kep
IS + Kg

IS                        

Kep
SI  + Kg

SI

Kep
II  + Kg

II










 











∆d
.
l
S

…
d
.
g
I










 = 











0
F
.

n

…
0










 − 



F
.

a




(Eq 46)




F
.

a



 is the apparent force rate, which connects the tool velocity

and has the form:




F
.

a



 = 











Kep
SS + Kg

SS + Kc

Kep
IS + Kg

IS                

Kep
SI  + Kg

SI

Kep
II  + Kg

II










 











d
.
Dξ

d
.
Dη
…
0










(Eq 47)

3. Results and Discussion

3.1 Advanced Model Illustration

Referring to the Appendix and Fig. 6, an ideal work model
of linear strain rate variation, which was proposed by Srini-
vasan et al. (Ref 1), was studied as an example. The results of
the present advanced model therefore can be compared with the
ideal work model. Figure 7 shows the relation of the nondimen-
sional H1 to the reduction R. It is found that the reduction R has
the same value under different H1 value in the ideal work
model. However, it increases with increasing values of H1 and
min the advanced model. The discrepancy is also increased
with H1 and m. The reduction value will approach the ideal
work model for the small H1 in the advanced model. The physi-
cal meaning of the H1 is similar to the D parameter used in the
traditional metal working analysis, which is defined as the ratio
of the diameter of the work metal to the contacted length be-
tween the tool and work metal. Backofen (Ref 6) and Lo (Ref 7,
8) indicate that the inhomogeneity and hardness variation in-
crease with D parameter. It is therefore reasonable to see that
the answer deviates from the ideal work model for larger H1
and friction factor m.

Figure 8 shows the relation between R* and E for H1being
equal to one in the axisymmetric extrusion. It is found that the
nondimensional strain rate E is smaller for the larger friction
factor m at the same size reduction R*. From the definition of E,
it can be seen that, if the same strain rate is assumed in the ex-
trusion, a larger ram velocity is required for the larger friction
factor case.

Fig. 5 The relation of tool velocity and nodal relative velocity

Fig. 6 Linear strain rate variation in special ideal work model
Fig. 7 Relation of reduction with nondimensional inlet diame-
ter H1
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Figure 9 uses a five degree polynomial equation to describe
the profile of the dies with R* = 0.4. The results from the ideal
work model and advanced model are compared. The influence
of friction factor m is also studied. It is noted that although the
discrepancy is minor in the figure, the predicted ram velocity
from these two models will be quite different for the same pre-
scribed strain rate.

3.2 Numerical Illustration

The analysis of the extrusion process was based on the axi-
symmetric condition. Due to the axisymmetry of the billet, only
the upper portion of the die and workpiece were modelled. An
automatic mesh was used to generate the finite element mesh,
which is comprised of four triangular elements making up a
quadrilateral element (Ref 9). Figure 10 shows the initial shape
of the die and the finite element mesh of workpiece. The mate-
rial parameters assumed in the present simulation are (Ref 4):

Stress-Strain Relation: σ = 147.5(0.01 + εp)
41628 MPa

Friction Factor: m = 0.0 and 0.4

The Young’s modulus and Poisson’s ratio are equal to 69100
MPa and 0.3, respectively. Both of the ideal work and advanced
models are investigated in the numerical simulation. The results
are compared with each other to verify the developed theory.

Figure 11 shows the resultant strain rate contour of size re-
duction R* = 0.4 for two models. It is noted that the nondimen-
sional strain rate E is equal to ε

.
L /ur. Hence, the ram velocity ur

will be different for the ideal work and advanced models. In or-
der to have a good comparison, the strain rate is set as ε

.
 = 4/s,

and the die length is set at L = 1 mm. Because the R* = 0.4, the
nondimensional E will be 1.98 and 1.84 for the ideal work
model and frictionless advanced model, respectively. Hence,
the velocities for these two models were about to be 2.0 and
2.17 mm/s. The contour lines indicate various strain rate, as

shown in the figure. It is observed that a substantial portion of
strain rate approximately 3.2/s (contours 5) to 4.0/s (contours
6) is in the reduction area of the die for the ideal work model
and frictionless advanced model.

It is important to see whether the advanced model is more
suitable than the ideal work model in the frictional cases. A fric-
tion factor m = 0.4 is used for the ideal work model and ad-
vanced model. Figure 12 shows the resultant strain rate
contour. A large portion of strain rate, approximately 3.5 to
4.3/s is found in the reduction region for the advanced model.
Whereas a smaller portion of strain rate approximately 3.8 to
4.7/s is distributed in the reduction region for the ideal work
model. And the maximum strain rate 4.7/s is approximately 9%
larger than the advanced model. Hence, the advanced model
has a better result in the frictional case.

Figure 13 investigates the influence of the material strain
hardening exponent to the strain rate distribution in the ad-
vanced frictionless model. The strain hardening exponent var-
ies from 0.4618 to 0.3, 0.2, and 0.1. The maximum strain rate
for these three strain parameters are 4.002, 3.971, and 4.08/s,
respectively. This result is consistent with the strain hardening
exponent and should have no influence in the development of
the advanced model theory.

Fig. 9 Die shapes for axisymmetric extrusion with H1 = 1

Fig. 10 The initial workpiece and finite element mesh
Fig. 8 Relation of size reduction and nondimensional strain
rate for H1 = 1
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4. Conclusions

This paper develops an advanced model for the designing of
axisymmetric extrusion dies based on a prescribed strain rate.
After incorporating the Tresca yield criterion and velocity field
with the die angularity, this model can give an accurate predic-
tion of the die shape. The influence of the interfacial friction
and the ram velocity are also studied. It is found that not only
the ram velocities will be quite different to generate the same
controlled strain rate, but also the die shapes are various for the
ideal work model and advanced model.

A conveniently explicit form of the load-correction matrix,
which is indispensable for the change in configuration of the
surface traction rate equilibrium, is derived clearly for the ap-
plication in the finite element analysis. The friction-correction
matrix based on the constant shear friction law along the tool
workpiece is also derived to solve interfacial friction. After
combining these matrices into the usual elasto-plastic large de-
formation finite element program, the verification of the ad-
vanced model is achieved by comparing the strain rate
distribution with the ideal work model. The maximum strain
rate will be consistent with each other for the ideal work model
and frictionless advanced model. But the advanced model will
be better than the ideal work model in the consideration of in-
terfacial friction. A worthy result is that the material strain hard-
ening exponent will not generate significant influence to the
maximum strain rate in the advanced model.

5. Appendix

The procedure of designing a controlled strain rate dies
based on the ideal work model is described in this section. As
the influences of geometric inhomogeneity and friction force
on the material flow are ignored, this model gives the prelimi-
nary shapes of dies.

Consider an axisymmetric extrusion process as shown in
Fig. 1. The die length is L, and the diameter of the billet is h. The
material undergoes an equivalent strain rate variation as shown
in Fig. 6. Consider a slab of material of width, dx, at a distance,
x, from the entrance to the die. Assuming velocity, u, and strain
rate to be uniform in the slab, the corresponding equivalent
strain increment is

dε = −2dεr = −2
dh
h

(Eq 48)

The time required to move a distance dx in the slab is given by

Fig. 12 Strain rate contour of ideal work and advanced models
for m = 0.4

Fig. 13 Effect of strain hardening exponent to the strain rate
contour

Fig. 11 Strain rate contour of ideal work and advanced models
for R* = 0.4
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dt = dx/u (Eq 49)

The equivalent strain rate of the material will be:

ε
.
 = −2

u
h

 
dh
dx

(Eq 50)

Incompressibility is assumed in the process. And u1 and h1
are the entrance velocity and the billet diameter, respectively.
Then

ε
.
 = −2

u1h1
2

h3
 
dh
dx

(Eq 51)

Equation 51 can be rewritten in the following form. That is

1

h2
 = 

1
u1h1

2
 ∫  
x

1

x

ε
.
dx + 

1

h1
2

(Eq 52)

Following the procedure of Srinivasan et al. (Ref 1), a sim-
ple strain rate variation is considered described by three
straight lines having slopes s1, s2, and s3, as shown in the figure.
The strain rate increases linearly from zero to a constant value
then drops to zero near the exit. The condition of zero strain rate
at the entrance and exit will generate a smooth die shape and
avoid redundant work due to sudden change of geometry. The
equivalent strain rate is therefore:

ε
.
 = s1x              0 ≤ x ≤ L− 1

  = s1L1 + s2(x − L1)        L1 ≤ x ≤ L− 2

  = s1L1 + s2(L2 − L1) + s3(x − L2)  L2 ≤ x ≤ L (Eq 53)

Equations 52 and 53 yield:

1

h2
 = 

s1x2

2q
 + 

1

h1
2
         0 ≤ x ≤ L− 1 (Eq 54)

1
h2

 = 
1
q
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
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s2 − s1

2
 L1

2 + (s1 − s2)L1x + s2
x2

2




 + 

1
h1

2

  L1 ≤ x ≤  L− 2 (Eq 55)

and

1
h2

 =

1
q

 




s2 − s1

2
 L1

2 + 
s3 − s2

2
 L2

2 + (s1 − s2)L1x + (s2 − s3)L2x + s3 
x2

2





+ 
1
h1

2
  L2 ≤ x ≤ L− (Eq 56)

where q is the volume flow rate, which equals u1h1
2. In addition,

his equal to h2 at the exit, which yields:

1

1 − R
 = 1 + 

g
u1

(Eq 57)

where

g = 
s2 − s1

2
 L1

2 + 
s3 − s2

2
 L2

2 + (s1 − s2)L1L + (s2 − s3)L2L

   + s3 
L2

2
(Eq 58)

and R is the reduction defined as

R = 1 – (h2/h1)
2 (Eq 59)

For a special case with constant strain rate, s2 = 0, the non-
dimensional strain rate, E, can be defined as:

E = ε
.
L/u1 = s1L1L/u1 (Eq 60)

and two factors

f1 = L1/L (Eq 61)

and

f2 = L2/L (Eq 62)

Then the reduction R can be expressed in terms of these factors
and E:

R = 1 – [1 + (1 – f1 + f2)E/2]–1 (Eq 63)

It can be seen from Eq 60 and 63 that for a given constant strain
rate and fixed f1 and f2, the reduction R is unchanged if u1/L is
constant. And the ratio of the entrance diameter h1 to the die
length L:

H1 = h1/L (Eq 64)

however, is independent of R. This is not reasonable for large
values of H1. In addition, the friction force on the die-work-
piece interface also has a significant influence on R for large E
and H1.
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