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An Advanced Model of Designing Controlled
Strain Rate Dies for Axisymmetric Extrusion
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This paper presents an advanced model for the design of stream-lined axisymmetric extrusion dies based
on a prescribed strain rate variation. This is vital to the preparation of the workpieces with mechanical
properties that are very sensitive to the strain rate distribution during a manufacturing process. The pro-
posed model, which incorporates Tresca’s yield criterion and velocity field with the die angularity, can
give an accurate prediction of the die shape. Influences of the interfacial friction and the ram velocity on
the die geometry are also studied. As a verification of the proposed model, an updated Lagrangian formu-
lated, elasto-plastic finite element program was developed to analyze the axisymmetric extrusion process.
Aclear derivation of the load-correction matrix, which is indispensable for the surface traction rate equi-
librium in the updated Lagrangian formulation, is described for the application of the finite element
simulation. Afriction-correction matrix based on a constant shear law is used to solve the interfacial fric-
tion. From the comparison of the resultant strain rate distribution, it verifies that the advanced model can
determine the surface angularity and friction force in the extrusion process.

Keywords advanced model, axisymmetric extrusion, constan Srinivasan et al. (Ref 1) developed an ideal work slab

strain rate method to predict a die profile, which can have a controlled
strain rate in extrusion. However, their methodology ignores
1. Introduction the influences of surface angularity and interfacial friction

force on the material flow. Hence it cannot apply to the process-

Most materials can be manufactured via extrusion processeS with high friction stress and sloped tool-workpiece con-

for producing shaped products. However, extrusion technologytaCted surface. Chang (Ref 2) rfecently prop(_)seq a new
Y : advanced slab method, which combines the velocity fields with
has undergone limited improvement in recent years due to the, - N - . .
. . . the yield criterion, for plane strain strip rolling process. In
inherent complexity of the process. Especially for some com- ) - . .
. . . . . . Chang’s method, Mohr’s circle is used so the stress state can in-
posite materials, the strain rate variation experienced in the ma- . -
; - S . - volve the effects of the surface angularity and friction force. In
terial as it flows through the die is an important factor in the

this paper, Chang’s method will be modified and applied to the

extruglon process. The strain .rate must be controlled gnder esign of strain rate driven dies for the axisymmetric extrusion
certain magnitude so that the influences of the generation an rocess

transfer of heat, as well as the distortion of the material on the As a verification for the developed advanced slab method
metallurgical variations, are acceptable. s a verification for the developed advanced siab method,
- ! - an updated Lagrangian formulated, elasto-plastic finite ele-
Conventional extrusion dies, such as the flat face (shear) :
ment program was also constructed to analyze the axisymmet-

dies and converging dies, have been used in the extrusion fOFic extrusion process. Due to the change of the configuration of

several decades. Because of the hot shortness resulting frorﬂ] . o
. - . . . e tool-workpiece surface, the equilibrium of the surface trac-
considerable adiabatic shear heating, the shear dies can only be

oberated at low ram speeds. Converselv. converain dieSt|on rate induced the load-correction matrix (Ref 3, 4). The
P P ) Y ging theoretical formulation of the load-correction matrix for axi-

which have conical, parabolic, or streamlined shapes, are bettegymmetric process was derived in this work. Thereafter, the
St“:jed o gedner?t;z ssmopther mzj[\telnall? flfoi/v. Aﬁcordmg t? (;.he friction-correction matrix of constant friction shear law was de-
study carried out by srinivasan et al. ( € ), W €N CoNICal dieS iy /0 4 to solve the frictional traction force rate. Afterincorporat-
are applied, the flowing matgrlal IS s'ubjected to rigid body ro'.ing these two correction matrices into the usual updated
tations and abrypt ch'anges in velocity at the entrance and.eX'Lagrangian formulated, finite element analysis, the axisym-
planes of the die. This yields great redundant work. The SIU-metric extrusion was simulated completely from the initial

ation of a parabolic die is similar. As for streamlined dies, such ,,,qteady state to the steady state. The resultant strain rate dis-

as cubic spline dies, the material flow path is smooth and they, \tion of the advanced model varies so that it can be applied
velocity is continuous, but the strain rate generally peaks to-;, solve the surface angularity and friction force.
ward the exit (Ref 1). Obviously, a new technique of develop-

ing adequate shapes for controlling strain rate is necessary in
the extrusion process. 2. Theory
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@=a+2\ (Eq7)

After substituting Eq 6 into Eq 1, the following equation is
[ hy obtained:
] A 52
Bl [T 0,—0,= 2k'\/I— %in(pFE (Ea 8)
=1L - x O O
yd According to the Levy-Mises flow, the relation of the strains
? | rate to stresses is described as
Fig. 1 Schematic representations of axisymmetric extrusion éx - ér o, -0,
S (Eq9)
let diameteh,. The length of the die Is. If the material under- X X

goes a prescribed strain rate, it is convenient to use the Mohr’s
circle technique to describe the shear stress distribution includ-
ing angularity effect. Knowing that the state of stresses at any
point under plastic deformation satisfies the Tresca yield crite-
rion, the radius of this Mohr’s circle equals the shear yield
strength of the workpiece, skylt is written as

Using the definition of strains rate to the velocity compo-
nents, an equation that combines the velocity components to
the stresses is derived as

ou ov -6 ov Ty

(0~ 0,2+ a2, = 42 (Eq1) o ox” Caro.-o (Eq 10)

In the constant friction law, the shear stress along the tool-

workpiece interface can be expressed as whereu andv are the velocity components in the glokahdr

coordinates. Moreover, it is assumed that the vertical compo-
nentv varies linearly across the workpiece:

T=-mk (Eq 2)

wheremis the friction factor. If the friction angle, is defined v(x,r) = % % (Eq 11)

as X

o =sim(-my (Ea3) whereuy is the horizontal component of velocity on the tool-

workpiece interface. Combining Eq 6, 8, and 11, the general ex-

then the shear stress on the tool-workpiece interface with re-Pression ofican be derived to be
spect to thex-r coordinate system is obtained geometrically
from Mohr’s circle 2

19 oppbB.
ur) = — 1 - 89-3 [Juthh +uhh' - h'2)]
65 thgo o C

T,,(x,h/2) = ksin(a + 2\) (Eq 4)
—_——————

. ) 3USh’ Iir i D O 4q
wherel represents the geometrical angularity of process. That +——0UV 1-F-sinpg - CU+ — (Eq 12)
is 2sinp O o O mh
A= tan‘ll:ﬂ' QE (Eq 5) where means the derivative with respeckiirection.q is the

% dxg volume flow rate which is:
Because the shear stregsvanishes at the centerline of the 2 2
workpiece, it is assumed that the shear stress varies linearly _ HUHDU _ nEhlﬂ(u ) (Eq 13)
along the thickness of the workpiece and can be expressed as Ef% T 5'2_8 Vave q
T, (x,r) = (2krsing)/h Eq 6 . . )
wlXr) = ( ) (Ea6) whereu, is the ram velocity, which equals the average entrance
velocity (Uy),ve C is denoted as the inhomogeneity function

where and is derived as
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to,-o.0 -
C=0——10 = . _H2E" 3HE' oo H¢ O
2k U=O55;———(cosp-C)2 - O E=o0
’ h/zglve * ps2  4sing oo HWsg
s, YTE ] _ (Eq 20)
—I r'Vi-pg=-singg dr=2(1- coslg)/3sirte
h? 0 I]h O

From Eq 12, the surface velocityat the position where
(Eq 14) vanishes, such as the entrance and the exit, is found to be

PhysicallyC represents the total effect of surface angularity Us = Un#/[h?(1 + hi'/16)] = (uy)o,dhy/N(L + h1'/16)]
and friction force on the “average” yield criterion. Itis assumed (Eq 21)
that the shear strain rate is relatively small with respect to the
strains rate ok andr direction. Therefore, the strain ratexof

andr will be the principal strain rate. Hence, the equivalent WNe€re (1)ayeis the average entrance velocity, which is equal
strain rate is derived as to the ram speed,. Becausé" is usually negative at the en-

trance and positive at the exit, the surface velocity is faster
than the average velocity at the entrance, while itis slower than
the average velocity at the exit. For the sake of simplicitis
usually set to be zero, and the deformation is unifork=a0
andX = 1. The ram velocity,, which is identical tou;) ;e can

) ) ) ) ) be just denoted as.

Itis found that the equivalent strain rate is a function ofthe  The nondimensional variablekandU. can be solved by in-
horizontal velocity on the tool-workpiece interface. Substitut- tegrating Eq 18 and 19, or 20, simult;neously with boundary
ing Eq 15 into Eq 12 and lettingbeh/2: conditionH, for the given values @ and friction factom. The

final thickness, saif,, can be used to calculate the size reduc-
tion R and reductioiR, which are defined as

'
uS

i=-pf =22 (Eq 15)

3h

., 0, 32 3 4q 0 .
EU = UE ——— [+ (cosp-C)-——ry €#0
o MO e

4sing
h-h, hi- h%
(Eq 16) RO= R= (Eq 22)
h, h?
If the strain rate is not zero, it is convenient to define the fol-
lowing nondimensional terms: 2.2 Finite Element Modeling Analysis
In the framework of the application of the incremental de-
X h Ug eL formation for the metal forming process, it is convenient to
X=C H=0 U=y E=C (Eq17)  adopt the updated Lagrangian formulation for the virtual work
r r

rate equation (Ref 5):

and Eq 15 and 16 can be rewritten in nondimensional forms as: s
I [5€] sdv = I [&v] f,dS (Eq 23)
v S a~o
_HE

H—2—US

(Eq 18)
wheres is the Lagrange stress raejs the velocity gradient
of dv;/0x;, andsfy is the rate of the nominal traction assigned
0 o .
and over the surfaces, on the current configuration. Because the
principal axes of the material element will be spun in the large

forming process, it leads to adopting the Jaumann rate of Kirch-

., e 3200 3HE H3D hoff stressit], to relate to the Lagrange stress rate. The relation
Us =Us E’E " H2E 0° * 4sing (cosp-C) - m% in the updated Lagrangian formulation is (Ref 5):
EZ0 (Eq19) ) . : .
(8] = [t] - [€][0] - [ol[€] + [o][€] (Eq 24)

It is noted that the nondimensional strain fatctually gives . .
. . . where p] is the current Euler stress arflfepresents the Euler
the combined effect of the strain rate, die length, and the ram . . . =t
strain rate. The relation betweei &nd F] is:

velocity. X, H, andUg represent the nondimensional position,
diameter, and horizontal velocity, respectively.

As for the entrance and exit where the strain rate approacheg¢] = L (CEAED) (Eq 25)
zero, Eq 16 can be differentiated with respegtagain and ap- 2
plied to the condition of zero strain rate. The nondimensional
form of the velocity gradient for zero strain rate is to be: Equation 24 can be written in a contracted form as
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5=f+pge (Eq26)  fds=-S (Fd9 =i, Lids+ f,t,ds+f, nds

Explicitly, [Dg] comprises the initial stress components at each + ftlgds + ftzjtjzds+ fn%s+ ftlfld%+ ftzfzd%+ fn ds
deformation stage and is called the initial stress matrix. (Eq 30)
It is natural to express the velocity,strain rateg, and ve- q
locity gradientg, in terms of the nodal velocitg, that is:
wheret,, t,, andn are the unit vectors, which are the tangential
and normal directions of the surface. The relations of the unit

Vo= [N]d

E; [N vectors and their rates are as follows:

€ =[B]d

& =[B]d Eq 27 O . o

o0~ [ e]j il ( q ) t1: —ezn + ent2 (Eq 31)

where N] is the shape functionB[] and B represent the
strain rate-velocity matrix and velocity gradient-velocity ma- [

trix, respectively. Substituting Eq 26 and 27 into Eq 23, the dis- =60 -0,% (Eq 32)
cretized element stiffness matrix is evaluated to obtain the
entire global stiffness matrix:

oo -l

n=0,t,-06t, (Eq 33)

([Keg * (KD dg! = Fy; (Eq 28)

whered,, 8,, 8, and their direction are shown in Fig. 2. By sub-
where K¢ is the conventional elasto-plastic stiffness matrix. stituting unit vectors rates into Eq 30 and letting the unit vectors
[Kgl represents the geometric stiffness matrix, which relates tocoincide with the local coordinate system:
the initial stress matrix[rlg. gd gis the nodal velocity in the
global coordinate syste D.Oé dgenotes the nominal force rate d R dso-
on the contacting surface. Itis noted that the change of the con—; (fdg = Btl =By + 1,8, + Ty d_DtldS
figuration on the contacted surfadg,s should be replaced by u .

the true force raté:and a load correction matrikf], which is + Stz + fué -f0 + i, dSDdeS
n

related to local nodal veloc@% nv1 d_SE

A L op dspo-
- - i +i,—f16,+f.08, +f ——FndS (Eq 34)
§:O§: i+ [KO]EdIS% (Eq 29) @n 11927 '2Y1 " In dSB

It is convenient to express the virtual velocity along the sur-

where superscri denotes the tool-workpiece contacted sur- o
P B P face of the rigid tool as:

face.
Load-Correction Matrix. As shown in Fig. 2, considering
the term in the surface integral part of Eq 23 and referring it to [8v] = [8v; dv; dv,] (Eq 35)
the local coordinates n, and(, the authors have
{.7}=ft1 T +fe t +fam and
by = —kyy,
B v SVifyds= [ (5] < (fd
IS[ V]EOD _J—S[ V] dt EJS)
. . dso
= %V Su ~ 120, + 1.6, + fy
J sg 'O nome TS
: : dsg
+ 0V, %tz*’fue 81+ e
‘a nor ds
: : ds
+ OV~ .0, + 0, + f. SRS
. —~ 17, o' " dS
y \V, ¢ : tangential direction (Eq 36)
o n : normal direction
— ¢ : perpendicular to ¢, 7 . . . _—
x skt curvature The terms which contain,ff,;, and {, in Eq 36 will induce
the load correction matrix]. If the geometric relation is in-
Fig. 2 Surface element and relation of local coordinate corporated in the contacted surface, it shows
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él = —KqVy (32 = KV Ad;. Bis equal tank/d. Physically, the meaning of the constitu-
tive equation is the friction stress, which will be equanio

5 lg& aVzB ds E’k aVzB (Eq 37) when the accumulated nodal relative displacement reaches the
nT298 arg dS pE g q prescribed distancd, Otherwise the friction stress will be line-

arly increased by the nodal relative displacement. Considering

a triangular element on the tool, the nodal relative velocity

wherek, andk, are the curvatures of the tool surface. For the Ady is expressed as

problem of axisymmetric process, it is natural that the follow-
ing relations should be unconditionally satisfied as:

;O
. Ss 1z
Adg=[1-+ 710, .50 (Eq 42)
— - 3
;=0 f,=0 I %
ov, v,
4 r
=0 —=— Eq 38 .
Ve o r (Eq 38) Therefore, the~, can be evaluated by the following integral

computation

As shown in Fig. 3, the relation of the radial velocity compo-
nentv, is equal to ¥ssina. Assuming that the tangential velocity, .
. . . . 0= —_ S
Ve, and normal veIocﬂwn, are linearly distributed for the ma- ?ttt__[ GVEftldS_ [50'1 ]B‘[K S]Egédz
terial element along the tool-workpiece interface, it will be pos- S t0
sible to integrate along the elemental line to obtain the explicit (Eq 43)
load correction matrix{] for the triangular element in Fig. 4:

where[KF in Eq 43 represents the friction correction matrix:

E;. F.Ks . 5 . Fsina _ FoKs _ Fe . F.sina 0 E
53 27 3 6 27 6r g
LF K, L, Fpsina 0 Fk, F, Fsina 0 E .
kg=D3 "2 6 2 ér - ¢
0 Fnk2 F¢  Fsina F.K, F, Fsina 0
RRRLACE 0o -2ty 0§ v,
6 2l 6r 3 2l 3r 0
H:tkz . E . F,sina 0 FiKo ~ f_n F.sina 0 O Yo
g6 "2 er 3 2 3 H
(Eq39)

whereF, andF, are the known traction force componehts.
the contacted length of the triangular element.
Substituting Eq 29 into Eq 28 and incorporatilg|| the fi-
nite element stiffness equation that connects the nodal velocity
d¥ on the tool-workpiece interface and the internal nodal ve-

focny cd' is x
Fig. 3 The relation between velocitigsandvg
F,.O
0 td
ogned el e
IS L KIS Kl 4 K D 0=
00

whereF, is the normal force raté, is the friction force rate,
which comes from the integral of the tefnin Eq 36.

Friction-Correction Matrix. The constant shear friction
law is adopted to evaluafg in this paper. The constitutive
equation of the constant shear friction stress rate can be repre
sented as (Ref 3):

_ C-Pady

g

whereAd; is the nodal relative velocity between tool and work-
piece ZAd; is the summation of the nodal relative displacement  Fig. 4 Nodal forces and local velocities of a triangular element
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(Eq 44)

As shown in Fig. 5, the tool or die has a specified velocity
dp in adeformation staghl is a contacted point on the tool sur-
face. Hence, the nodal velocity of poMtcan be decomposed
into the following form

as

+§A o
™

o

: Hpe O
4 =mo (Eq 45)
o 'ovw %iDnEM
Thedy,; anddp,, are the tool velocities in the local coordinates.
Substituting Eq 44 and 45 into Eq 40:

SS4 KSS SS ks Sl : 00
KK g 25
IS IS 0o.. 0o=0d D_g o
E(epH(g Klelp*KgDEHl 0ol
0 o090 Do
(Eq 46)
?.:aé is the apparent force rate, which connects the tool velocity

d has the form:

an

Fig. 5 The relation of tool velocity and nodal relative velocity
é *

é(z)

z=0 L1 L2 =1L

Fig. 6 Linear strain rate variation in special ideal work model
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KE KoK,

KS,+ kg OXDE
Fe= &
0

,00P0
00-- 0
0o0 O

ol (Eq47)

S + KIS
p+ Ky 9

| 1l
e Kep

3. Results and Discussion

3.1 Advanced Model lllustration

Referring to the Appendix and Fig. 6, an ideal work model
of linear strain rate variation, which was proposed by Srini-
vasan et al. (Ref 1), was studied as an example. The results of
the present advanced model therefore can be compared with the
ideal work model. Figure 7 shows the relation of the nondimen-
sionalH; to the reductiofR. It is found that the reductidfhas
the same value under different; value in the ideal work
model. However, it increases with increasing valuds,adnd
min the advanced model. The discrepancy is also increased
with H; andm. The reduction value will approach the ideal
work model for the smaHi; in the advanced model. The physi-
cal meaning of thél, is similar to the D parameter used in the
traditional metal working analysis, which is defined as the ratio
of the diameter of the work metal to the contacted length be-
tween the tool and work metal. Backofen (Ref 6) and Lo (Ref 7,
8) indicate that the inhomogeneity and hardness variation in-
crease with D parameter. It is therefore reasonable to see that
the answer deviates from the ideal work model for lakyer
and friction factom.

Figure 8 shows the relation betwe@hand E for H,being
equal to one in the axisymmetric extrusion. It is found that the
nondimensional strain rateis smaller for the larger friction
factormat the same size reductiBh From the definition oE,
it can be seen that, if the same strain rate is assumed in the ex-
trusion, a larger ram velocity is required for the larger friction
factor case.

0.8

0.7

o
o)

m=0.0

________ ideal work
________ model

o o
IS on

o

Reduction R
N

©
N}

0.1

0. T T

20 3.0
Inlet Diameter H,

0 T T T T
0.0 1.0
Nondimensional

Fig. 7 Relation of reduction with nondimensional inlet diame-
terH,
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Figure 9 uses a five degree polynomial equation to describeshown in the figure. It is observed that a substantial portion of
the profile of the dies witR* = 0.4. The results from the ideal  strain rate approximately 3.2/s (contours 5) to 4.0/s (contours
work model and advanced model are compared. The influenced) is in the reduction area of the die for the ideal work model
of friction factormis also studied. It is noted that although the and frictionless advanced model.
discrepancy is minor in the figure, the predicted ram velocity It is important to see whether the advanced model is more
from these two models will be quite different for the same pre- suitable than the ideal work model in the frictional cases. Afric-

scribed strain rate. tion factorm= 0.4 is used for the ideal work model and ad-
vanced model. Figure 12 shows the resultant strain rate
3.2 Numerical lllustration contour. A large portion of strain rate, approximately 3.5 to

_ ) 4.3/s is found in the reduction region for the advanced model.

The analysis of the extrusion process was based on the axiyyhereas a smaller portion of strain rate approximately 3.8 to
symmetric condition. Due to the axisymmetry of the billet, only 4 7/s is distributed in the reduction region for the ideal work
the upper portion of the die and workpiece were modelled. An yodel. And the maximum strain rate 4.7/s is approximately 9%

automatic mesh was used to generate the finite element mesharger than the advanced model. Hence, the advanced model

quadrilateral element (Ref 9). Figure 10 shows the initial shape  Figure 13 investigates the influence of the material strain
of the die and the finite element mesh of workpiece. The mate-hardening exponent to the strain rate distribution in the ad-
rial parameters assumed in the present simulation are (Ref 4): yanced frictionless model. The strain hardening exponent var-
ies from 0.4618 to 0.3, 0.2, and 0.1. The maximum strain rate

Stress-Strain Relatiow: = 147.5(0.01 Jep)41628MPa for these three strain parameters are 4.002, 3.971, and 4.08/s,
Friction Factorm = 0.0 and 0.4 respectively. This result is consistent W|th the strain hardening
exponent and should have no influence in the development of

_ _ the advanced model theory.
The Young's modulus and Poisson’s ratio are equal to 69100

MPa and 0.3, respectively. Both of the ideal work and advanced

models are investigated in the numerical simulation. The results

are compared with each other to verify the developed theory.
Figure 11 shows the resultant strain rate contour of size re-

ductionR" = 0.4 for two models. It is noted that the nondimen- 0.6
sional strain rat& is equal teL/u,. Hence, the ram velocity,
will be different for the ideal work and advanced models. Inor- 7
der to have a good comparison, the strain rate is set dgs, 2 ideal work mod
. . ok o
and the die length is setlat 1 mm. Because tH& = 0.4, the 205 A 1deal work model
N X X i O * : advanced model m=0.0
nondimensionaE will be 1.98 and 1.84 for the ideal work (0 : advanced model m=—0.4
model and frictionless advanced model, respectively. Hence, — . ’
the velocities for these two models were about to be 2.0 and 8
2.17 mm/s. The contour lines indicate various strain rate, as .© 5 4 |
5 0.
&
0.5 O -
£
O 0.3 - Size Reduction R* = 0.4
. Y. .
0.4 - o (Reduction R = 0.64)
. =z
- B
(C) 03 I 02 T T T T T T T
= 0.0 0.2 0.4 0.6 0.8 1.0
S Nondimensional Position X
O
@ _ Fig. 9 Die shapes for axisymmetric extrusion with= 1
(el 0.2 : ideal work model 9 P y h
° * : advanced model m=0.0
N A : advanced model m=0.4
o1 4
%
(=]
0.0 T T T T T T T T T I T T N
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3 1
Nondimensional Strain Rate E
( unit : mm )
Fig. 8 Relation of size reduction and nondimensional strain
rate forH; = 1 Fig. 10 The initial workpiece and finite element mesh
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CONTOUR VALUES CONTOUR VALUES

1 :0.009 1 :0.012

2 :0.801 . 2 3 0.955

z : éggg ideal work model 2 ég?? ideal work model m=0.4

§ ¢3.177 5 :3.784

6 :3.969 6 :4.728

CONTOUR VALUES CONTOUR VALUES

1 :0.011 1+ 0.007

2 :0.824 2 : 0.873

i : ;gg'{ advanced model m=0.0 2 3 éggﬁ advanced model m=0.4

5 :3.264 5 3 3.469

6 : 4.078 6 :4.335

Fig. 11 Strain rate contour of ideal work and advanced models Fig. 12 Strain rate contour of ideal work and advanced models

forR*=0.4 form=0.4

CONTOUR VALLES A conveniently explicit form of the load-correction matrix,

L 5 0.000 which is indispensable for the change in configuration of the

208 strain hardening exponent 0.1 surface traction rate equilibrium, is derived clearly for the ap-

5 & 5708 plication in the finite element analysis. The friction-correction

6 = 4.080 . ..
matrix based on the constant shear friction law along the tool
workpiece is also derived to solve interfacial friction. After
combining these matrices into the usual elasto-plastic large de-
formation finite element program, the verification of the ad-

CONTOUR VALLES vanced model is achieved by comparing the strain rate

Lt 0.008 distribution with the ideal work model. The maximum strain

R strain hardening exponent 0.2 rate will be consistent with each other for the ideal work model

15 and frictionless advanced model. But the advanced model will

o be better than the ideal work model in the consideration of in-

terfacial friction. Aworthy resultis that the material strain hard-
ening exponent will not generate significant influence to the
maximum strain rate in the advanced model.

CONTOUR VALUES

i i

3 1:507 strain hardening exponent 0.3 5' Appendlx

4 :2.405

5 :3.204

6 : 4.002

The procedure of designing a controlled strain rate dies
based on the ideal work model is described in this section. As
the influences of geometric inhomogeneity and friction force
on the material flow are ignored, this model gives the prelimi-
nary shapes of dies.

Consider an axisymmetric extrusion process as shown in
Fig. 1. The die length Is, and the diameter of the billetisThe
material undergoes an equivalent strain rate variation as shown
in Fig. 6. Consider a slab of material of widdl, at a distance,

X, from the entrance to the die. Assuming velocitgnd strain
This paper develops an advanced model for the designing of g i

. ; . : . . rate to be uniform in the slab, the corresponding equivalent
axisymmetric extrusion dies based on a prescribed strain rateyy in | .
. . : L e rain increment is
After incorporating the Tresca yield criterion and velocity field
with the die angularity, this model can give an accurate predic-
tion of the die shape. The influence of the interfacial friction dh

Fig. 13 Effect of strain hardening exponent to the strain rate
contour

4. Conclusions

and the ram velocity are also studied. It is found that not only de = —2de, = _ZT (Eq 48)
the ram velocities will be quite different to generate the same

controlled strain rate, but also the die shapes are various for the

ideal work model and advanced model. The time required to move a distamben the slab is given by
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dt=dxfu (Eq 49) wheregis the volume flow rate, which equalg?. In addition,
his equal tdh, at the exit, which yields:

The equivalent strain rate of the material will be: 1
= =1+9 (Eq57)
1-R Uy
g=-2--—— (Eq 50)

where

Incompressibility is assumed in the process. Apendh;

iLee:]he entrance velocity and the billet diameter, respectively.g -2 ; *1 L2+ 53 ; =2 L3+ (s, SpLsL + (S, ~ Sy)LoL

|_2
__uhf gh Eq 51 8375 (Eq 58)
" dx (Eq51)

andRis the reduction defined as

Equation 51 can be rewritten in the following form. That is

R=1- fi,/h;)? (Eq 59)
X
1_1 I dx+ L (Eq 52) _ For a special case with constant strain rgte;, 0, the non-
h? uh? g h? dimensional strain rat&, can be defined as:
1

E=¢l/u; =s)L L/u; (Eq 60)

Following the procedure of Srinivasan et al. (Ref 1), a sim-
ple strain rate variation is considered described by three
straight lines having slopeg s,, ands,, as shown in the figure.
The strain rate increases linearly from zero to a constant value
then drops to zero near the exit. The condition of zero strain ratef1 = L4/L (Eq 61)
at the entrance and exit will generate a smooth die shape and
avoid redundant work due to sudden change of geometry. Thegnd
equivalent strain rate is therefore:

and two factors

_ fo =Lyl (Eq 62)
£=5X Exst,
=L +5,(x-Ly) L <x<t, Then the reductioR can be expressed in terms of these factors
andE:
=5l +s(L,— L) +s5(x-L) LrysxsL (Eq 53)
R=1-[1+(1-f+f)E/2]? (Eq 63)

Equations 52 and 53 yield:
It can be seen from Eq 60 and 63 that for a given constant strain

rate and fixedfand %, the reductiorR is unchanged ifi,/L is

1_5¢ 1 constant. And the ratio of the entrance diambjeio the die
e < X <
h2 29 h? Osx<ty (Eq 54) lengthL:
) . H;=hy/L (Eq 64)
1_15"5 x2d 1
ﬁ——BZ—L%+(Sl—SZ)L1X+32?D+ﬁ .. o
a0 o hf however, is independent Bf This is not reasonable for large
Ly<xs<t, (Eq 55) vglueg ofH;. In addition, thg frllc.:t|on force on the die-work-
piece interface also has a significant influencdidar largeE
andH;.
and
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